已知等比数列{an}满足Sn=2n?1,(n∈N*)①求数列{an}的通项公式;②若数列{bn}满足bn=anlogan+12,求数

已知等比数列{an}满足Sn=2n?1,(n∈N*)①求数列{an}的通项公式;②若数列{bn}满足bn=anlogan+12,求数列{bn}的前n项和Tn.

无其他回答

已知等比数列{an}满足Sn=2n?1,(n∈N*)①求数列{an}的通项公式;②若数列...
1,(n∈N*),得a1=S1=1,a2=S2-a1=3-1=2,∴q=a2a1=2,∴an=2n-1(n∈N*);②由an=2n-1,∴an+1=2n,∴bn=anlog2an+1=2n?1log22n=n?2n-1,∴Tn=b1+b2+…+bn=1?20+2?21+3?22+…+(n-1)?2n-2+n?2n-1 ①2Tn=1?21+2?22+…+(n?1)?2n?1+n?2n...

...满足Sn-2an+n=0(n∈N*)(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}...
(Ⅰ)由Sn-2an+n=0 ①得:Sn+1-2an+1+(n+1)=0 ②②-①得,an+1+1=2(an+1).又在Sn-2an+n=0中取n=1得,a1=1,∴{an+1}是以a1+1=2为首项,以2为公比的等比数列.∴an+1=2n,即an=2n?1;(Ⅱ)由(Ⅰ)知,bn=log2(an+1)+1=log2(2n?1+1)+1=n...

...n2+n,数列{bn}有b1=1,bnbn+1=2n(Ⅰ)求{an}的通项;(Ⅱ)若cn=anb2n...
(1)当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,又n=1时也符合上式.∴an=2n.(2)∵bnbn+1=2n,∴当n≥2时,bn-1bn=2n-1.∴bnbn+1bn-1bn=bn+1bn-1=2n2n-1=2,又∵b1=1,b1b2=2,∴b2=2.∴数列{b2n} 是以2为首项,2...

...和Sn=n(n+1)\/2 (n∈N*) (1)求数列{an}的通项公式 (2)设数列{bn}满...
an=Sn-S(n-1)n(n+1)\/2-n(n-1)\/2=n (2n-1)(2^bn-1)=1 =>2^bn-1=1\/(2n-1)2^bn=2n\/(2n-1)bn=log(2)[1+1\/(2n-1)]Tn=log(2)[(1+1\/1)(1+1\/3)...(1+1\/(2n-1)]欲证2Tn>log2(2an+1),只需证明 2log(2)[(1+1\/1)(1+1\/3)...(1+1\/(2n-1)...

...n(n∈N*)(1)求数列{an}的通项公式;(2)若bn=(2n+1)an+
(1)∵Sn=2an-n,∴a1=1,∵Sn=2an-n,Sn-1=2an-1-(n-1),n≥2,n∈N+,两式相减,得an=2an-1+1,∴an+1=2(an-1+1),n≥2,n∈N+,∵a1+1=2,∴{an+1}是首项为2,公比为2的等比数列,∴an+1=2n,∴an=2n-1.(2)∵bn=(2n+1)an+2n+1,∴bn=(2n...

已知数列{an}的前n项和为Sn,且满足Sn=2an-2n(n∈N*)?(I)设bn=an+2...
1=an+2an?1+2=2an?1+4an?1+2=2(常数),∴{bn}是以b1=a1+2=4为首项,2为公比的等比数列,∴数列{bn}的通项公式bn=2n+1.…(6分)(Ⅱ)∵cn=log2bn=log22n+1=n+1,∴cnbn=n+12n+1,…(8分)则Tn=222+323+…+n2n+n+12n+1,…①12Tn=223+324+…+n2n+1+n...

...1)求数列{an}的通项公式;(2)求若数列{bn}满...
2a2=a1+a3-1 2(a1q)=a1+a1q^2-1 2q=1+q^2-1 2q=q^2 q=2(q不等于0) 所以an=a1q^n-1=2^n-1 bn=2n-1+2^n-1 Sn=b1+b2+b3+b4+…+bn =(2×1-1+2^1-1)+(2×2-1+2^2-1)+…+(2n-1+2^n-1)=(因为bn是由等差和等比构成用分组求和)=n^2+2^n-1 ...

...中项,(1)求数列{an}的通项公式;(2)若数列{bn}满足
∴2a2=a1+a3-1=a3;又{an}为等比数列,2a1q=a1q2,解得q=2,(3分)∴an=2n?1.(6分)(Ⅱ)∵an=2n-1,bn=n+an(n∈N*),∴bn=n+2n?1,∴Sn=b1+b 2+b3+…+bn=(1+2+3+…+n)+(20+2+22+…2n?1)=n(n+1)2+1?2n1?2=n(n+1)2+2n?1.(12分)

...满足Sn+1=2an,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)在数列{an}的...
(Ⅰ)n=1时,s1+1=2a1,∴a1=1,…(2分)n≥2时,又sn-1+1=2an-1,相减得an=2an-1,∵{an}是以1为首项,2为公比的等比数列,故an=2n?1…(6分)(Ⅱ)由(Ⅰ)得an+1=2n,∴2n=2n-1+(n+1)dn,∴dn=2n?1n+1,∴1dn=n+12n?1…(8分)∴Tn=220+321+…+...

数列{an}的前n项和为Sn,满足Sn=n2+2n.等比数列{bn}满足:b1=...
∴an+1-an=[2(n+1)+1]-(2n+1)=2为常数 ∴{an}为等差数列,且通项公式为an=2n+1(n∈N*)…(7分)(2)解:设等比数列{bn}的公比为q,则q3= b4 b1 =27,∴q=3,则bn=3×3n-1=3n,n∈N*,∴ an bn = 2n+1 3n …(9分)∴Tn= 3 3 + 5 32 + 7 33 +…+ 2n+1 3n...

相似回答
大家正在搜