高等数学求极限。详细过程及解释,谢谢!

如题所述

第1个回答  2012-10-13
因式分解,x^m-1=(x-1)[x^(m-1)+x^(m-2)+...+x+1],x^n-1=(x-1)[x^(n-1)+x^(n-2)+...+x+1],所以原极限=lim(x→1) [x^(m-1)+x^(m-2)+...+x+1] / [x^(m-1)+x^(m-2)+...+x+1]=m/n追问

那个因式分解怎么分出来的啊?还有,最后一步不太懂欸,求解

追答

平方差、立方差推广一下就有了,最后一步就是极限运算法则用一下,分子分母都求极限

第2个回答  2012-10-13
分子分母趋于0
用洛贝塔法则,分子分母同时求导数:
原式=lim(x^m-1)'/(x^n-1)'
=lim(mx^(m-1))/(nx^(n-1) x.......1
=m*1/n=m/n本回答被提问者和网友采纳
第3个回答  2012-10-13
用洛必达法者,分子分母同时求导
=[m*x^(m-1)]/[n*x^(n-1)],x->1
=m/n
第4个回答  2012-10-13
lim(x→1)(x^m-1)/(x^n-1)
=lim(x→1)(x^m-1)'/(x^n-1)'
=lim(x→1)mx^(m-1)/nx^(n-1)
=m/n
相似回答