第1个回答 2017-12-31
∫ x²/(1 + x²)² dx,令x = tanz,dx = sec²z dz
= ∫ tan²z/sec⁴z * (sec²z dz)
= ∫ sin²z/cos²z * cos²z dz
= ∫ (1 - cos2z)/2 dz
= z/2 - (1/4)sin2z + C
= (1/2)arctanx - (1/2) * x/√(1 + x²) * 1/√(1 + x²) + C
= (1/2)arctanx - x/[2(1 + x²)] + C本回答被提问者采纳