求不定积分∫[(x^2-9)^(1/2)]dx/x

今天学了第二类换元法,我这么做
令x=3sect,dx=3secttantdt
原式=3∫[(tant)^2]dt
然后不会做了,泪流满面求指导,大学数学之路真坎坷哎

还有你不知道的,就是函数y = arcsecx的图像,在(-∞,+∞)上不连续,所以要分区间讨论。令x=3sect需要分为x3时的情况。



温馨提示:内容为网友见解,仅供参考
第1个回答  2011-11-14
求不定积分∫{[√(x²-9)]/x}dx
解:令x=3sect,则dx=3secttantdt,代入原式得:
∫{[√(x²-9)]/x}dx=3∫tan²tdt=3∫(sec²t-1)dt=3[∫dt/cos²t-∫dt]=3(tant-t)+C=3[(1/3)√(x²-9)-arcsec(x/3)]+C
=√(x²-9)-3arcsec(x/3)+C
∵x=3sect,∴sect=x/3,tant=(1/3)√(x²-9),t=arcsec(x/3).
第2个回答  2011-11-14
x=3sect,dx=3secttantdt,
(set)^2=x^2/9,(tant)^2=(x^2-9)/9,
tant=√(x^2-9)/3,
原式=3∫[(tant)^2]sectdt
=3∫([(sect)^2-1]sectdt
=3∫(sect)^3dt-3∫sectdt
∫(sect)^3dt=∫(sect)dtant
=secttant-∫tantdsect
=secttant-∫sect(tant)^2ft
=secttant-∫[(sect)^3-sect]st
=secttant-∫(sect)^3dt+∫sectdt,
2∫(sect)^3dt=secttant+∫sectdt,
∫(sect)^3dt=(secttant+∫sectdt)/2,
原式=3(secttant+∫sectdt)/2-3∫sectdt
=3secttant/2-(3/2)∫sectdt
=3secttant/2-(3/2)ln|sect+tant|+C1
=3x*√(x^2-9)/3/2-(3/2)ln|x/3+√(x^2-9)/3|+C1
=x√(x^2-9)/2-(3/2))ln|x+√(x^2-9)|+C。
不知分母是否有x?
第3个回答  2011-11-14
3∫[(tant)^2dt=3∫[(sect)^2-1]dt=3∫[(sect)^2 dt-3∫dt=3tant+3t+c
代入即可

求不定积分∫[(x^2-9)^(1\/2)]dx\/(x^2)
当x>3时,令x=3secu,则(x^2-9)^(1\/2)=3tanu,dx=3secu*tanudu 原式=∫ 3tanu\/[9(secu)^2]*3secu*tanu du =∫ (tanu)^2\/(secu) du =∫ (secu)^2-1]\/(secu) du =∫ secudu -∫ cosudu =ln|secu+tanu|-sinu+C =ln|x\/3+√(x^2-9)\/3|+√(x^2-9)\/x^2+C...

求不定积分∫[(((x^2)-9)^1\/2)\/x]dx,求详细过程~
∫√(x^2-9)dx\/x x=3secu dx=3sectanu =∫3tanu^2du =3∫(secu^2-1)du =3tanu-3u+C =3√[(x^2-9)\/3]-3arccos(3\/x)+C =√3*(√x^2-9)-3arccos(3\/x)+C

求(x^2-9)^(1\/2)\/x的不定积分
原式=∫ √(x²-9) \/x dx = ∫ √(x²-9) \/(2x²) d(x²)=0.5 ∫ t \/(t²+9) d(t²+9)=∫ t² \/(t²+9) dt =∫ (t²+9-9) \/(t²+9) dt = t -3 ∫ 1\/ [1+(t\/3)²] d(t\/3)=t -3arc...

求函数(x^2-9)^(1\/2)\/x 的不定积分
令x=3secu dx=3tanusecudu ∫√(x^2-9)\/xdx =∫3tanu×3tanusecu\/(3secu)du =3∫tan^2udu =3∫(sec^2u-1)du =3(tanu-u)+C =3[√(x^2-9)\/3-arcsec(x\/3)]+C =√(x^2-9)-3arcsec(x\/3)+C

对(x^2-9)^1\/2\/x求不定积分
变量替换 设t=√(x²-9)则xdx=tdt 代入得 原式=∫t²\/(t²+9)dt =∫[1-9\/(t²+9)]dt =t-3arctan(t\/3)+C 最后回代即可

(x^2-9)^1\/2\/x的不定积分
如图

求不定积分
∫(x^2-9)^1\/2\/xdx:用变量替换x=sect,可化为∫(tant)^2dt,然后(tant)^2=(sect)^2-1。∫1\/1+(2x)^1\/2dx:用变量替换t=(2x)^1\/2,可化为∫t\/(1+t)dt,然后分子加1减1进行分项。∫1\/1+(1-x^2)^1\/2dx:用变量替换x=sint,可化为∫cost\/(1+cost)dt,然后分子加1减...

∫1\/(x^2(x^2-9)^1\/2)dx
这样就很简单啦~~原式子=∫x-9\/xdx =x^2-9inx+c 如果是√是根号 可能会有简单方法~不过我没想到 就用笨办法 把x=3sect (3sect)^2-9=tant^2 所以原式子=∫3tant\/sect d sect = ∫3 tant\/sect sect*tant dt =∫3tant^2dt =3∫sint^2\/cos^2dt =3∫1-cos^2\/cos^2dt = 3 (...

不定积分{x^2*[(x^2-9)^(1\/2)]}^(1\/2)如何算
- 9)] dx = ∫ x(x² - 9)^(1\/4) dx = ∫ (x² - 9)^(1\/4) d(x²\/2)= (1\/2)∫ (x² - 9)^(1\/4) d(x² - 9)= (1\/2) • (x² - 9)^(1\/4+1)\/(1\/4+1) + C = (2\/5)(x² - 9)^(5\/4) + C ...

不定积分{x^2*[(x^2-9)^(1\/2)]}^(1\/2)如何算
- 9)] dx = ∫ x(x² - 9)^(1\/4) dx = ∫ (x² - 9)^(1\/4) d(x²\/2)= (1\/2)∫ (x² - 9)^(1\/4) d(x² - 9)= (1\/2) • (x² - 9)^(1\/4+1)\/(1\/4+1) + C = (2\/5)(x² - 9)^(5\/4) + C ...

相似回答