1+1到底等于几?

如题所述

1+1等于2。

加法(通常用加号“+”表示)是算术的四个基本操作之一,其余的是减法,乘法和除法。 例如,在下面的图片中,共有三个苹果和两个苹果的组合,共计五个苹果。 该观察结果等同于数学表达式“3 + 2 = 5”,即“3加2等于5”。

性质

一般来说,在一个集合F上定义一个二元关系“+”,满足:

Ⅰ 交换律:对任意的 a ,b ∈ F ,a + b = b + a ∈ F;

Ⅱ 结合律:对任意的a,b,c∈F,a + (b +c) = (a +b) +c;

Ⅲ 单位元:存在一个元素 0 ∈ F ,满足对任意的 a ∈ F ,a + 0 = 0 + a = a;

逆元:对任意的 a ∈F ,存在一个元素 -a∈ F ,满足a + (-a) = 0。

“+”称作定义在集合F上的加法。

“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。

温馨提示:内容为网友见解,仅供参考
第1个回答  2020-07-27

1+1=2 。1+1=2 是初等数学范围内的数值计算等式。

人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。

第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。



扩展资料:

哥德巴赫猜想

数学上,还有另一个非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。尽管听起来很神秘,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义。原来,这是18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。

例如3+3=6; 11+13=24。他试图证明自己的发现,却屡战屡败。1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。

有人立即对一个个大于6的偶数进行了验算,一直算到了330000000,结果都表明哥德巴赫猜想是对的,但就是不能证明。于是这道每个不小于6的偶数都是两素数之和[简称(1+1)的猜想,就被称为“哥德巴赫猜想”,成为数学皇冠上一颗可望不可即的“明珠”。



本回答被网友采纳
第2个回答  2022-04-13

1+1除等于2外,在不同的情况下有不同的答案:
1、在二进制时。1+1=10;
2、布尔代数时。1+1=1;
3、作为代表时。如哥德巴赫猜想;
4、单位不同时。如1小时加1分等于61分;
5、在急转弯时。如1加1,答案是11;
6、特殊情况下。如一个男人加一个孕妇等于三个人;
7、实际需要时。如一尺布加一斤米等于一袋米;
8、智力测验时。如一滴水加一滴水等于一滴水;
9、搞笑回答时。如一只猫加一只老鼠等于一只吃饱了的猫;
10、在猜字谜时。如一加1,答案是十;一加一,答案是王、丰、卅等;一加一等于,答案是田、由、甲、申等;
补充:
1+1=0(一次生加上一次死,你什么也没有得到)
1+1=1(一条河流如另一条还是一条河)
1+1=2(这个答案是众所周知的)
1+1=10(计算机二进制)

                                 不喜勿喷          (ˉε(# ̄)☆╰╮o( ̄皿 ̄///)

第3个回答  2020-08-05
1+1=2 。1+1=2 是初等数学范围内的数值计算等式。

人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。

第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。



扩展资料:

哥德巴赫猜想

数学上,还有另一个非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。尽管听起来很神秘,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义。原来,这是18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。

例如3+3=6; 11+13=24。他试图证明自己的发现,却屡战屡败。1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。

有人立即对一个个大于6的偶数进行了验算,一直算到了330000000,结果都表明哥德巴赫猜想是对的,但就是不能证明。于是这道每个不小于6的偶数都是两素数之和[简称(1+1)的猜想,就被称为“哥德巴赫猜想”,成为数学皇冠上一颗可望不可即的“明珠”。
第4个回答  2021-02-19
1+1=2 。1+1=2 是初等数学范围内的数值计算等式。

人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。

第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。



扩展资料:

哥德巴赫猜想

数学上,还有另一个非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。尽管听起来很神秘,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义。原来,这是18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。

例如3+3=6; 11+13=24。他试图证明自己的发现,却屡战屡败。1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。

有人立即对一个个大于6的偶数进行了验算,一直算到了330000000,结果都表明哥德巴赫猜想是对的,但就是不能证明。于是这道每个不小于6的偶数都是两素数之和[简称(1+1)的猜想,就被称为“哥德巴赫猜想”,成为数学皇冠上一颗可望不可即的“明珠”。

百度知道 - 信息提示
在数学角度来说,1+1等于2。在1742年给欧拉的信中数学家哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和.因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和.欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个...

1加1等多少?
第二种答案:1+1=1 (学历可能比较高,明知道等于二,但认为不会出现这么简单的问题,脑子比较复杂)这类人的优点是一般具有管理协调能力,具有凝聚力,能让两个人拧成一股绳,这种人适合做企业的领导者。第三种答案:1+1=2 (一般幼儿园小朋友会脱口而出)这类人具有原则性,不管你是什么样的...

1+1等于几?
答:1+1等于2

1+1等于几?
1+1=2 1、在独立物品中,1+1等于22、在偶对物品中,1+1等于1对3、在动物中,加上时间轴,1+1是不定数,可能是0也可能是无线大例子:在战场上,一个自己人加上一个敌人,很可能是同归于尽,等于0个人在生活中1个母猪加一个公猪,至会得到1窝小猪---...由此可见:1加1没有限定的话,会...

1+1等于几?有多少种答案?
1、1+1等于2。2、单位不同时,如1小时加1分等于61分。3、在急转弯时,如1加1,答案是11。4、智力测验时,如一滴水加一滴水等于一滴水。5、在猜字谜时,如一加1,答案是十。6、一加一,答案是王、丰、卅等。7、1+1=14(一周加一周是14天)8、1+1=120(一分钟加一分钟是120秒)9、1...

1+1等于几啊?
1+1 = 2。1+1=2 是初等数学范围内的数值计算等式。人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,...

1+1等于几
1+1等于2。1+1=2 是初等数学范围内的数值计算等式。英国著名的科学杂志《物理世界》此前举行了一场别开生面的评选活动,邀请世界各地的读者选出自己心目中最伟大、最喜爱的公式、定理或定律。结果,让很多人意外的是,1+1=2这个连小学生都知道的基本数学公式不仅入选,而且还高居第一。一个加拿大...

1+1= 请知道的讲一下 谢谢
1+1可以等于很多 1+1=2 1+1=8(1天+1周=8天)1+1=14(1周+1周=14天)1+1=0.5(1季+1季=半年)1+1=730(1平年+1平年=730天)1+1=731(1平年+1闰年=731天)……还可以等于很多,就看你怎样掰 当然在做数学时一定等于2啦,不然就没分了!

1+1等于多少?
1、算错的情况下,一个等式,计算错误时,可以等于任何数值;2、一对夫妻只要一个孩子的情况下,1加1也等于3;3、单位不同的情况下,1加1也等于3,比如1公升的水加上1斤的水等于3斤的水。1+1等于2的原因 1+1为什么等于2,这个问题看似简单却又奇妙无比,这要涉及到公理法的知识。 在现代的...

一加一等于几?
不一定。一加一可以等于二,也可以不等于二。1、一加一等于一零(即二进制)。2、学过数学或物理的人可能都记得矢量这个概念。当把两个有方向性的参数合在一起的时候,会有四种情况发生:一加一等于二,一加一大于一小于二;一加一大于零小于一,一加一等于零。3、一加一可以等于1。一堆沙子加...

相似回答