已知数列{an}的通项公式为an=1/n(n+2)求前n项的和

Sn=1/(1×3)+1/(2×4)+1/(3×5)+1/(4×6)+···1/[(n-1)(n+1)]+1/[n(n+2)]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)···(1/n-1/(n+2))]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
第三行的-1/(n+1)-1/(n+2)是怎么来的

在最后出现+[(1/(n-1)-1/(n+1)]+[1/n-1/(n+2)],其中1/(n-1)与1/n都与前面的项抵消了,就剩下最后2项。实际上,第二行的中括号内化简后就是最前2项和最后2项。
温馨提示:内容为网友见解,仅供参考
第1个回答  2013-03-27
Sn=1/(1×3)+1/(2×4)+1/(3×5)+1/(4×6)+···1/[(n-1)(n+1)]+1/[n(n+2)]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)···(1/n-1/(n+2))]
=(1/2)[(1-1/3)+(1/2-1/4)+(1/3-1/5)+...+(1/(n-2)-1/n)+(1/(n-1)-1/(n+1))+(1/n-1/(n+2))]
=(1/2)[1+1/2-1/(n+1)-1/(n+2)]
可以看出来,都互相减掉了,剩下这两项。本回答被网友采纳

已知数列{an}的通项公式为an=1\/n(n+2)求前n项的和
在最后出现+[(1\/(n-1)-1\/(n+1)]+[1\/n-1\/(n+2)],其中1\/(n-1)与1\/n都与前面的项抵消了,就剩下最后2项。实际上,第二行的中括号内化简后就是最前2项和最后2项。

已知数列{an}的通项公式为an=1\/n(n+2)求前n项的和
1 an=1\/[n(n+2)]Sn=1\/(1×3)+1\/(2×4)+1\/(3×5)+1\/(4×6)+···1\/[(n-1)(n+1)]+1\/[n(n+2)]=(1\/2)[(1-1\/3)+(1\/2-1\/4)+(1\/3-1\/5)···(1\/n-1\/(n+2))]=(1\/2)[1+1\/2-1\/(n+1)-1\/(n+2)]这种方法叫做裂项相消 然后化简一下就行了 2...

已知数列{an}的通项公式是an=1\/{n(n+2) }(n∈N),求它的前n项的和。
an=1\/n(n+2)={1\/n-1\/(n+2)}\/2 a1+a2+...+an=(1\/2)*{1-1\/3+1\/2-1\/4+1\/3-1\/5+1\/4-1\/6+...+1\/n-1\/(n+2)}={1+1\/2-1\/n-1\/(n+2)}\/2

数列{an}的通项为an=1\/2n(2n+2),求{an}的前n项和
an=1\/[2n(2n+2)]= (1\/4) [ 1\/n - 1\/(n+1) ]Sn =a1+a2+...+an =(1\/4) [1-1\/(n+1) ]= n\/[4(n+1)]

数列{an}的通项公式为an=1\/(2n+1)^2,求前n项和Sn
【答案】:style='color:#fe2419;'>an=2n+1(当n为奇数)style='color:#fe2419;'>an=2∧n (当n为偶数)style='color:#fe2419;'>要求n项的和必须n为连续自然数;所以 设奇数n=2m-1;偶数n=2m.(m为连续自然数)style='color:#fe2419;'>所以1、奇数项:an=2n+1=2(2m-1)+1=4m-1...

已知数列{an}的通项公式an=1\/[n*(n+2)],则其前n项和为Sn,limSn=
∵ an=1\/[n*(n+2)]=1\/2[1\/n-1\/(n+2)]∴Sn=a1+a2+a3+a4+a5+。。。+an-2+an-1+an =1\/2[(1-1\/3)+(1\/2-1\/4)+(1\/3-1\/5)+(1\/4-1\/6)+(1\/5-1\/7)+。。。+(1\/(n-2)-1\/n)+(1\/(n-1)-1\/(n+1))+(1\/n-1\/(n+2))]=1\/2[1+1\/2-1\/(n+1...

求数列An=1\/[n(n+2)]的前n项和
1\/(n^2+2n)=[1\/n - 1\/(n+2)]\/2 前n项和=(1-1\/3)\/2+(1\/2-1\/4)\/2+...+[1\/n-1\/(n+2)]\/2 裂项相消 =[1+1\/2-1\/(n+1)-1\/(n+2)]\/2 =3\/4-(2n+3)\/[2(n+1)(n+2)]祝您学习愉快

已知数列an的通项公式an=1\/(n+2)(n+1),则其前n项和Sn
an=1\/(n+2)(n+1)=1\/(n+1)-1\/(n+2)所以sn=1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+.1\/n-1\/(n+1)+1\/(n+1)-1\/(n+2)=1\/2-1\/(n+2)=n\/(2n+4)

an=[n×(n+ 2)]分之一的前n项和怎么算
an=1\/n(n+2)=1\/2[1\/n-1\/(n+2)]前n项之和为 Sn=a1+a2+…+an =1\/2[1-1\/3+1\/2-1\/4+ … +1\/(n-1)-1\/(n+1)+1\/n-1\/(n+2)]=1\/2[1+1\/2-1\/(n+1)-1\/(n+2)]=1\/2{3\/2-[1\/(n+1)+1\/(n+2)]} =3\/4-(2n+3)\/2(n+1)(n+2)排版不好,如果看...

已知数列{an}的通项公式是an=1\/n,求数列{an}的前n项和.
an=1\/n(n+1)=(1\/n)-(1\/n+1)a(n-1)=(1\/n-1)-(1\/n)a(n-2)=(1\/n-2)-(1\/n-1).a(1)=(1\/1)-(1\/2)Sn=1\/1-1\/2+1\/2-1\/3+1\/3-1\/4+.+1\/n-1\/n+1 =1-1\/(n+1)=n\/(n+1)

相似回答