排列组合问题

中日围棋队各出8名队员,按事先安排好的次序出场进行围棋擂台赛,双方由1号队员比赛,负者被淘汰,胜者再与负方的2号队员比赛。…直到有一方队员全部被淘汰为止,另一方获胜,形成一种比赛过程,现在中方只动用了3名队员,就击败了日方的所有队员。问这样的比赛过程有几种?
书上答案写的是分为分别插孔和一起插孔,c(8,1)+c(8,2)=36 我不理解分别插孔

“选元”(从n类个不同元素中每次取出m个元素)是排列和组合两个概念的共同属性,而“排序”(是否将取出的m个元素按照一定的顺序排成一列)是排列和组合两个概念的不同属性.
你根据以上的定义可以知道,排列和组合都是从一个大范围里面取东西,区别是排列取出东西要再按顺序排列,组合取出的东西相互间没有顺序关系
举个简单的例子,
1.从20个人中选3个人,不同选发是?
这时用的是组合,因为取出3个人后,没有要求他们再按什么排列,也就是对他们的位置没有限定

2,从20个人里选3个,而后按身高由高到矮排队,有多少不同方法?
这时用排列,因为从20个人里选3个后,还要按高矮排列,这时题2比题1的不同之处,按高矮排,就说明,题目是对3个人的顺序是有限定,这时用排列

同理,按高矮排还可以改成按体重,视力,分数,等等等等

自我感觉学的时候你知道概念和会做题是两会事,因为题目中有很多技巧,光知道概念是没法做的
比如以下
一、合理分类与准确分步法

解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,作到分类标准明确,分步层次清楚,不重不漏。
例1 、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )
A.120种 B.96种 C.78种 D.72种
选C

二、正难反易转化法
对于一些生疏问题或直接求解较为复杂或较为困难问题,从正面入手情况较多,不易解决,这时可从反面入手,将其转化为一个简单问题来处理。
例2、 马路上有8只路灯,为节约用电又不影响正常的照明,可把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉两端的灯,那么满足条件的关灯方法共有多少种?
分析: 关掉第1只灯的方法有6种,关第二只,第三只时需分类讨论,十分复杂。若从反面入手考虑,每一种关灯的方法对应着一种满足题设条件的亮灯与关灯的排列,于是问题转化为“在5只亮灯的6个空中插入3只暗灯”的问题。

三、混合问题“先选后排”
对于排列组合混合问题,可先选出元素,再排列。
例 3、 4个不同小球放入编号为1,2,3,4的四个盒中,恰有一空盒的方法有多少种?
因有一空盒,故必有一盒子放两球,他们是先选的,答案144

四、特殊元素“优先安排法”
对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。
例4、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。
A24个 B。30个 C。40个 D。60个
[分析]由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类 选B

五、总体淘汰法
对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。
例子4可以按这个方法做

六、局部问题“整体优先法”
对于局部排列问题,可先将局部看作一个元与其余元素一同排列,然后在进行局部排列。
例5、7人站成一排照相,要求甲乙两人之间恰好隔三人的站法有多少种?
分析: 甲、乙及间隔的3人组成一个“小整体”,这3人可从其余5人中选,这是第一步要做的 答案720

七、相邻问题一“元”法
对于某几个元素要求相邻的排列问题,可将相邻的元素看作一个“元”与其他元素排列,然后在对“元”内部元素排列。
例6、 7人站成一排照相,甲、乙、丙三人相邻,有多少种不同排法?
分析: 把甲、乙、丙三人看作一个“元”,与其余4人共5个元作全排列答案7200种
八、不相邻问题“插空法
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例7、在例6中, 若要求甲、乙、丙不相邻,则有多少种不同的排法?
先将4人排好,出现5个空,甲乙两人进5个空中的3个 答案1400

九。构造模型 “隔板法
对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。

十一、分排问题“直排法”
把几个元素排成前后若干排的排列问题,若没有其它的特殊要求,可采取统一排成一排的方法来处理。
例10、7个人坐两排座位,第一排3个人,第二排坐4个人,则不同的坐法有多少种?
分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理

近几年高考选择还出现一种题,列举,他用排列组合公式算不了,可是也算排列组合中的一种,这时你只能将可能一种一种列出了
温馨提示:内容为网友见解,仅供参考
第1个回答  2015-09-28
我也没看懂答案的思路,我的做法是:既然用了我方3名,又是顺序淘汰制的,那么第三名至少赢了1个,剩下7个在3名队员中任意分配,第一位有0-7这8种情况,第二位在第一位的8种情况下分别由0-7,0-6,0-5......0-1,0这8种组合,共计8+7+6+5+4+3+2+1,即C(9,2)=36种情况,所以答案是36.本回答被网友采纳
第2个回答  2019-01-04
这个问题要理解需要考虑全面!思路很重要,插孔法是正确的思路:
中方有可能第一个队员就败下阵来,所以中方第二个对员有可能要面对日方第一个队员,所以日方第一个队员前面也是算一个孔,剩下的日方八个队员一字排开,中间还有七个孔。所以总的算起来有8个孔。如果这个明白的话,你就知道c(8,1)和c(8,2)是怎么来的了。
另外有可能日方一个队员连续打败多个中方队员,所以一种情况是中方两个队员要对应在一个孔里面。算两个人在一个孔的话那就是c(8,1)。
如果两个人在不同的孔的话那就是c(8,2)。
第3个回答  2019-01-04
排列组合一定要学的灵活,这道题就是简单一个组合问题,别按答案把自己思想固化,那样遇到这类题还是没有头绪,我是高中数学老师,给你讲个简单易懂的最佳方法,题中说中方只动用了3人,说明中方2个已经挂了(你懂的)那也就是说最后不管其他,比分肯定8比2,因为鬼子没赢,中方最后一定把他们搞定,那么一共搞了几场呢?8+2=10场对吗?也就是说10场较量里前9场让鬼子办了2场,就是咱那两不争气的家伙对吧?所以直接C(9,2)=36多明了!奖赏分速速拿来,记得欧!

怎样解决排列组合问题?
1、要使至少两个发生所以可以考虑为恰有两个发生与三个都发生的可能情况之和,故第一问按照排列组合公式表达为 C(2,3)+C(3,3)=3*2\/(2*1)+3*2*1\/(3*2*1)=4 (其中括号内第一个数字为上标,第二个数字为下标)。2、由1可得恰有两个发生的表达式为 C(2,3)=3*2\/(2*1)=3 ...

省考行测:数量关系排列组合问题?
一、什么是排列组合问题 排列组合问题属于计数问题中的一类问题,其本质是作为计数问题的工具存在。例如,“小李手上有3个不同的工作要做,请问小李完成这三个工作的顺序共有多少种?”即是一道排列组合题目。要掌握好排列组合问题首先是要全面透析计数问题的两个计数原理,其次是要熟练应用排列和组合这两...

如何计算排列组合问题?
排列组合的计算公式是A(n,m)=n×(n-1).(n-m+1)=n\/(n-m)。排列组合是组合学最基本的概念,所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序,组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的发展 排列组合的中心问题是研究给定要求的排列和...

高中如何秒杀排列组合题目?
7、交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式。8、定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。9、多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。

排列组合问题
答案:9种 解析:先将这四个人和这个四个卡片分别编号为ABCD abcd 先以A为对象来研究 A只能将手中的a送给B、C、D三个人中的一人 有C(3,1)种(不能送给自己)假设A将手中的a送给了C 那么C将手中的c可以送给A、B、D三个人中的一个人 也有C(3,1)种 假设C将手中的c送给了B 那么就剩下...

排列组合问题怎样计算?
计算方法——(1)排列数公式 排列用符号A(n,m)表示,m_n。计算公式是:A(n,m)=n(n-1)(n-2)??(n-m+1)=n!\/(n-m)!此外规定0!=1,n!表示n(n-1)(n-2)?1 例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。(2)组合数公式 组合用符号C(n,m)表示,m_n。公式是:C(n,...

排列组合问题,有几种排列方式?
解:C(4,2)表示从4个物品当中随机抽取2个的方法种类。C(4,2)=6,即从4个物品当中随机抽取2个一共有6种方式。A(4,2)表示从4个不同物品中随机抽取两个进行排列的种类。其中A(4,2)=C(4,2)*A(2,2)=12,即表示从4个不同物品中随机抽取两个进行排列的种类一共有12种排列方式。

高中排列组合问题!
高中排列组合问题的题目形式多种多样,以下是几个经典的例子:1. \\"有5个小朋友,从他们中选取3个小朋友组成小组,请问共有多少种不同的组合方式?\\"这是组合问题,解答方式是使用组合公式:C(n, k) = n! \/ (k!(n-k)!)其中n表示总体数量,k表示选择数量,\\"!\\"表示阶乘运算符。根据题目...

什么是排列组合问题?
排列组合是一种数学概念,主要用于解决在n个不同元素中选出m个元素组成一个集合的问题,其中n表示元素总数,m表示要选出的元素个数。排列指的是从n个元素中选取m个元素进行排列,即对这m个元素进行全排列,得到的结果称为排列。例如,从4个元素{A, B, C, D}中选取3个元素进行排列,可以得到以下...

c语言排列组合问题,怎么算?
=10 c54=5*4*3*2÷(1*2*3*4)=5 从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

相似回答