求一个高中数学相关的比较偏的研究性课题

如题所述

我之前曾是数学课代表 ... 写过的 并不难 比如说斐波那契数列的研究
码字不容易 望采纳 谢谢
斐波那契数列,

又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

定义

斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368
特别指出:第0项是0,第1项是第一个1。
这个数列从第二项开始,每一项都等于前两项之和。
斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)

递推公式

斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:
显然这是一个线性递推数列。
通项公式

(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)
注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通项公式的推导

方法一:利用特征方程(线性代数解法)
线性递推数列的特征方程为:
  X^2=X+1
  解得
  X1=(1+√5)/2, X2=(1-√5)/2.
  则F(n)=C1*X1^n + C2*X2^n
  ∵F(1)=F(2)=1
  ∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1 
  解得C1=1/√5,C2=-1/√5
  ∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
方法二:待定系数法构造等比数列1(初等代数解法)
设常数r,s。
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
则r+s=1, -rs=1。
n≥3时,有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
……
F⑶-r*F⑵=s*[F⑵-r*F⑴]。
联立以上n-2个式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。
∵s=1-r,F⑴=F⑵=1。
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)。
那么:
F(n)=s^(n-1)+r*F(n-1)。
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。
则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法三:待定系数法构造等比数列2(初等代数解法)
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。
解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。
得α+β=1。
αβ=-1。
构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以。
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。
由式1,式2,可得。
an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
方法四:母函数法。
对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)
令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。
那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x
.因此S(x)=x/(1-x-x^2).
不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].
因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.
再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……
于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……
其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.
因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
与黄金分割

关系

有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割0.618.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618)
1÷1=1,1÷2=0.5,2÷3=0.666...,3÷5=0.6,5÷8=0.625,…………,55÷89=0.617977…,…………144÷233=0.618025…46368÷75025=0.6180339886…...
越到后面,这些比值越接近黄金比.
证明

a[n+2]=a[n+1]+a[n]。
两边同时除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]。
若a[n+1]/a[n]的极限存在,设其极限为x,
则lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。
所以x=1+1/x。
即x²=x+1。
所以极限是黄金分割比..
特性

平方与前后项

从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)
证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)
与集合子集

斐波那契数列的第n+2项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
奇数项求和

偶数项求和

平方求和

隔项关系

f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]
两倍项关系

f(2n)/f(n)=f(n-1)+f(n+1)
其他公式

应用

生活中斐波那契

斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。
斐波那契数与植物花瓣
3………………………百合和蝴蝶花
5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花
8………………………翠雀花
13………………………金盏和玫瑰
21………………………紫宛
34、55、89……………雏菊
斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。
黄金分割

随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887..…
杨辉三角

将杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……
公式表示如下:
f⑴=C(0,0)=1。
f⑵=C(1,0)=1。
f⑶=C(2,0)+C(1,1)=1+1=2。
f⑷=C(3,0)+C(2,1)=1+2=3。
f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。
……
F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)
质数数量

斐波那契数列的整除性与素数生成性
每3个连续的数中有且只有一个被2整除,
每4个连续的数中有且只有一个被3整除,
每5个连续的数中有且只有一个被5整除,
每6个连续的数中有且只有一个被8整除,
每7个连续的数中有且只有一个被13整除,
每8个连续的数中有且只有一个被21整除,
每9个连续的数中有且只有一个被34整除,
.......
我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)
斐波那契数列的素数无限多吗?
尾数循环

斐波那契数列的个位数:一个60步的循环
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
进一步,斐波那契数列的最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环。
自然界中巧合

斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。
另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……
其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。
斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部
这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1992年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列长出花瓣。
数字谜题

三角形的三边关系定理和斐波那契数列的一个联系:
现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?
分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。
我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。
在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。
影视作品中的斐波那契数列
斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~在FOX热播美剧《Fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。
推广

斐波那契—卢卡斯数列

卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2)。
卢卡斯数列的通项公式为 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n
这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)
n
1
2
3
4
5
6
7
8
9
10

斐波那契数列F(n)
1
1
2
3
5
8
13
21
34
55

卢卡斯数列L(n)
1
3
4
7
11
18
29
47
76
123

F(n)*L(n)
1
3
8
21
55
144
377
987
2584
6765

类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。
如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。
斐波那契—卢卡斯数列之间的广泛联系
①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n
1
2
3
4
5
6
7
8
9
10

F[1,4]n
1
4
5
9
14
23
37
60
97
157

F[1,3]n
1
3
4
7
11
18
29
47
76
123

F[1,4]n-F[1,3]n
0
1
1
2
3
5
8
13
21
34

F[1,4]n+F[1,3]n
2
7
9
16
25
41
66
107
173
280

②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如
n
1
2
3
4
5
6
7
8
9
10

F[1,1](n)
1
1
2
3
5
8
13
21
34
55

F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34

F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34

F[1,3]n
1
3
4
7
11
18
29
47
76
123

黄金特征与孪生斐波那契—卢卡斯数列
斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,
斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5
F[1,4]数列:|4*4-1*5|=11
F[2,5]数列:|5*5-2*7|=11
F[2,7]数列:|7*7-2*9|=31
斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。
而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。
广义斐波那契数列

斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。
佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).
据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。
当p=1,q=1时,我们得到斐波那契—卢卡斯数列。
当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。
当p=-1,q=2时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。
具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列p=±1。
当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……
相关数学

排列组合

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?
这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……
1,2,3,5,8,13……所以,登上十级,有89种走法。
类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?
答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。
求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式
由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。
兔子繁殖问题

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?
我们不妨拿新出生的一对小兔子分析一下:
第一个月小兔子没有繁殖能力,所以还是一对
两个月后,生下一对小兔对数共有两对
三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对
------
依次类推可以列出下表:
经过月数
0
1
2
3
4
5
6
7
8
9
10
11
12
幼仔对数
1
0
1
1
2
3
5
8
13
21
34
55
89
成兔对数
0
1
1
2
3
5
8
13
21
34
55
89
144
总体对数
1
1
2
3
5
8
13
21
34
55
89
144
233
幼仔对数=前月成兔对数
成兔对数=前月成兔对数+前月幼仔对数
总体对数=本月成兔对数+本月幼仔对数
可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。
这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)
数列与矩阵

对于斐波那契数列1、1、2、3、5、8、13、……。有如下定义
F(n)=f(n-1)+f(n-2)
F(1)=1
F(2)=1
对于以下矩阵乘法
F(n+1) = 11 F(n)
F(n) 10 F(n-1)
它的运算就是右边的矩阵 11乘以矩阵 F(n) 得到:
10 F(n-1)
F(n+1)=F(n)+F(n-1)
F(n)=F(n)
可见该矩阵的乘法完全符合斐波那契数列的定义
设矩阵A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*1
1 0 F(n) F(0) 0
这就是斐波那契数列的矩阵乘法定义。
另矩阵乘法的一个运算法则A^n(n为偶数) = A^(n/2)* A^(n/2),这样我们通过二分的思想,可以实现对数复杂度的矩阵相乘。
因此可以用递归的方法求得答案。
数列值的另一种求法:
F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]
其中[ x ]表示取距离 x 最近的整数。
温馨提示:内容为网友见解,仅供参考
第1个回答  2016-12-30
高阶等差数列本回答被网友采纳

有哪些是适合高中研究性学习的课题
1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、 购房贷款决策问题 5、 有关房子粉刷(装修)的预算 6、 日常生活中的悖论问题 7、 关于数学知识在物理上的应用探索 8、 黄金数的广泛应用 9、 余弦定理在日常生活中的应用 10、股票(基金)投资中的数学 11、环境...

高中生课题研究题目有哪些?
高中生课题研究题目如下:1、数学中的黄金分割 2、气象学中的数学应用问题 3、如何开发解题智慧 4、 数学灵感的培养 5、 有关房子粉刷(装修)的预算 6、 日常生活中的悖论问题 7、 关于数学知识在物理上的应用探索 8、 黄金数的广泛应用 9、 余弦定理在日常生活中的应用 10、古典小说与武侠小说的...

高中学习研究性学习的题目有哪些啊?
数学与逻辑:“数论中的素数分布”“概率论在实际生活中的应用”“几何图形的对称性与美学”科学探究:“水的三态变化及其物理化学性质研究”“生物多样性与生态系统稳定性”“太阳能电池的原理与效率优化”社会科学:“城市化进程中的环境问题”“不同文化背景下的教育模式比较”“历史上的重大改革及其影响...

高中数学研究性学习
又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知f(x)= 2x2+x+2,求f(x+1)这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。

高中数学论文新颖的题目参考
1、新课改理念下高中数学课堂教学实践与思考 2、高中数学课堂教学有效提问的策略 3、在高中数学课堂教学中开展研究性学习的实践与思考 4、多媒体辅助高中数学课堂教学的研究 5、新课改下高中数学课堂教学的几点思考 6、浅谈高中数学课堂教学中有效教学情境的创设 7、关注高中数学课堂教学中的有效提问 8、...

帮忙想个高中数学小论文的题目
1、 数学中的研究性学习 2、数字危机 3、中学数学中的化归方法 4、高斯分布的启示 5、a2 b2≧2ab的变形推广及应用 6、网络优化 7、泰勒公式及其应用 8、浅谈中学数学中的反证法 9、数学选择题的利和弊 10、浅谈计算机辅助数学教学 11、论研究性学习 12、浅谈发展数学思维的学习方法 13、关于整...

高中数学研究性学习课题题目精选
回答:高中数学研究性学习课题题目精选.1、银行存款利息和利税的调查.2、气象学中的数学应用问题.3、如何开发解题智慧.4、多面体欧拉定理的发现.5、购房贷款决策问题...高中数学|研究性学习|课题|题目精选精选高中数学研究性学习课题题目精选.1、银行存款利息和利税的调查.2、气象学中的数学应用问题.3、如...

提供一些数学研究课题,可以写高中数学论文的那种
研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 ...

高中研究性数学课题《导数在生活中的应用》
在高中数学教学中开展研究性课题的尝试浙江省萧山中学 沈建刚一、引言著名数学家吴文俊院士在《数学教育不能从培养数学家的要求出发》一文中指出,“任何数学都要讲逻辑推理,但这只是问题的一个方面,更重要的是用数学去解决问题,解决日常生活,其他学科出现的数学问题。学校给的题目都是有答案的,已知什么,求证什么都是...

数学研究性学习课题
数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、...

相似回答