高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.
高中数学知识
一、函数和导数,函数可以说是整个高中数学的关键.在高中数学当中,每一个.板块都需要函数的引导.这是高中数学的一根纽带.在高考数学中,函数这些内容方只在30分左右,其中包括指数,对数,还有图像的变化.考察的内容,关键是以填空的形式,还有选择的形式,有的还有在解答题需要让你画一些图像来正确解答.
二、数列,数列也是高中的重点内容.其实数列在初中的时候我们就经历过,我们就学过,只不过数列在高中这个阶段也是重要的一个版块儿.他可以让你算出钱一个数列的数值都是多少?还有等比数列,等差数列,比较好一点的就是这些不用画图,像你就可以算出来这一个板块还是比较简单,只要你记住一些死公式,往里边套就好.
三、三角函数,三角函数也是高中数学重点内容.三角函数的考查一般就是在诱导公式还有俩差公式或者就是证明求解.还有图像的分析会让你.算出图像平移的变化,还有对称的变化,还有一些单调性,单调区间周期性.最后一个对函数的考查就是用实际例题几何的综合.
四、几何函数综合,这种综合题也是高考比较常见的题型,通常也在二三十分左右梯形,也就是考察一些线性的规划,还有圆锥的定义圆锥,圆柱都是考察的重点.还会让你算一些面积,表面积一些体积.还有侧面积或者切去某块儿部分让你算出它的面积.
五、向量,向量这个板块儿是必修科目当中最后一个重点板块儿.向量我们在刚开始接触的时候,我们会觉得它是一条射线.关键的就是它可以精确地算出圆柱和圆锥的位置关系还可以算出他们的加减法,但是简答都是会有一定的位置关系和数量,关键都是以这种计算为主.
向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.
高中数学重点难点归纳总结——函数
高中数学重点难点归纳总结——数列与极限
高中数学重点难点归纳总结——解析几何
问题背景本人是一名市重点高中数学教师,2019年高考数学班级平均分126分,其中更是有12位同学考上了985、211双一流学校,一本达线率100%
高中数学重难点正如题主所说的函数问题,函数问题贯穿整个高中数学内容,其解题方法跟思想更是与各类题型融会贯通,在这里就举一个例子。
一:基本的初等函数常见的基本初等函数:指数函数、对数函数、幂函数、三角函数。再将其分得细一点,就是反比例函数、一次函数、二次函数和超越函数(这一点一定要引起重视)
这里函数其实早在初中就已经接触过几个,但仍然是高中课本里面常考的内容。在解决函数问题一定要对基本的初等函数性质非常的熟悉,才能够灵活的去运用。
基本初等函数的性质探究,首先要结合它的图像去理解。
如果你看到这里,不妨花8分钟的时间去检测一下自己,能否在8分钟之内将三个三角函数所有的性质全部列举出来。
其性质按照图像、定义域、值域、单调区间(单调递增和单调递减区间)、对称性(对称中心和对称轴)、周期性(周期与最小正周期)、Y取得最大、最小值时对应的x的解集……
如果你能够在8分钟的时间内将这些性质无意疏漏的全部列举出来,那么说明你对这一块的内容掌握的是非常的清楚的,做到后面到了高三的时候就要画图的时候,不描点,并且做题的时候不脑海当中就能够构建图像来解题,这样就是极其熟练,做题不会出现差错。
学习就要学到这个境界才行。
二:高中数学“难点”导数很多人都说导数难,确实导数他跟一个高等数学是衔接在一起的的,是一个过渡期。其实也就是我们常说的超越函数,就是将基本的初等函数结合在一起的问题求解。
其中在这个地方给大家一些建议,就是学导数的时候必须掌握两个命题方向。
第一个就是零点的存在性定理(极其重要)
也就是大家经常做导出的时候,一接球了之后再进行二阶求导,但是大家有没有想过为什么要进行二级求导?二阶求导的意义又是何在?
其实在这一块就涉及到一个零点的存在性定理的运用,因为每一阶导函数它们之间都是逐层递推的关系不能够跨阶段去推断其任何性质!
第二点就是导数里面一个“隐零点”的问题。
这类问题往往就是超越函数里面经常遇到的关于它的一个极值点,你不能够用加减乘除直接算出来,但是我们可以知道他必定存在一个零点,这个时候我们就可以利用整体代换去把这个零点设出来。
因为极值点它满足到函数,整体为零,那么你就可以找到它们之间的关系。
三:函数思想常见的一些函数思想是做高中数学必备的,就比如大家经常讲的一个数形结合。
在日常的教学工作当中,我跟学生强调过最多的一点就是多画图!多画图!!多画图!!!
有很多的学生,他解题的过程当中不善于去画图,这一点一定要引起重视。
那么画图有什么作用呢?为什么老师们一再强调数形结合这种解题思想呢?
因为我们通过正确的图像可以加深对题目本意的理解,做到解题的过程当中不添不漏,恰到好处。
并且有很多抽象函数的问题,你直接去求解是算不出来的,我们必须要通过它的图像几何意义或者说某些性质来协助解题才行。
就像这些宗谱卷里面经常遇到的第12题函数有几个零点我们都是用数形结合去转化问题,将原本的一个抽象函数转化为定图像于动图象之间交点的问题。
然后再去判断参数范围在哪一个区间里面变化才能够满足题意,那么就能够做到轻松求解。
谢谢大家,如果有疑问可以关注,私信我。也有很多图条上的学生经常在私信里问我题目,我都会逐一解答,谢谢大家支持。
高中哪些难
一、高中数学难点 高中数学涵盖了许多难点,其中包括但不限于以下几个核心内容:函数与导数应用、数列与极限、圆锥曲线(如椭圆、抛物线、双曲线)、立体几何以及概率与统计。二、详细解释 1. 函数与导数应用:高中数学中的函数部分涉及多种函数类型及其性质,如周期性、奇偶性、单调性等。导数的概念引入后...
高中数学难点是哪些
高中数学的难点是哪些,回答如下:3大难点是:1、知识的灵活度非常高,课本上的例题仅仅是最基本的模型,以例题为基础,会产生非常多的变式。题型灵活,让很多学生苦不堪言。2、内容抽象,技巧性非常强。面对课外教辅资料题目、高考题目,很多学生束手无策,原因是解决这些题目需要的技巧很复杂,如果训练...
高中数学的学习难点有哪些?
高中数学的学习难点主要包括以下几个方面:抽象概念的理解:高中数学涉及许多抽象的概念,如函数、极限、导数、积分等。这些概念与初中数学的直观形象相比,更难以理解和掌握。学生需要通过大量的实例和练习,逐步建立起对这些抽象概念的认识和理解。公式和定理的记忆与运用:高中数学中有大量的公式和定理,如...
高中数学有些什么难点?
高中数学的难点主要集中在以下几个方面:抽象概念的理解:高中数学涉及到许多抽象的概念,如函数、极限、导数等。这些概念对于学生来说可能比较难以理解,需要通过大量的实例和练习来掌握。复杂的计算:高中数学中有许多复杂的计算,如三角函数、解析几何、概率统计等。这些计算往往需要较高的运算能力和技巧,...
高中数学的重难点有哪些?如何攻破?
高中数学的重难点主要包括以下几个方面:1.函数与方程:函数是高中数学的基础,而方程则是解决问题的关键。学生需要掌握各种函数的性质、图像和变换,以及解一元二次方程、不等式等方法。2.数列与数学归纳法:数列是高中数学的重要内容之一,学生需要掌握等差数列、等比数列等常见数列的性质和求和公式,以及...
高中数学有哪几部分的知识是重难点?
5. 向量:向量是高考数学中的重要难点之一,需要考生掌握向量的基本概念、向量的加法和减法、向量积和点积等运算法则,并能熟练应用到各种向量相关的计算和推理问题中。这些数学难点都需要在备考过程中花费大量时间和精力进行系统的学习和训练,通过不断的练习和提高才能够顺利地应对高考数学考试。
高中数学难在哪里
高中数学究竟难在哪里?难点一:函数,函数贯穿整个高中学习,高一学习基本初等函数,高二学习函数与导数,而且函数思想和方法都可以用在其他很多知识点上.函数占高考数学30%左右的分数,可想而知其重要性.其难点在于理解,它本身具有的抽象和变化,很多人抓不住,另外作为压轴题的导数题,更是没几个人能做出来...
高中数学的难点是什么
高中数学的难点内容主要包括以下几个方面:首先,函数与方程是高中数学中的核心内容之一,包括函数的性质、图像变换、逆函数等,涉及一次方程、二次方程以及指数与对数方程的解法。其次,三角函数也是高中数学的重点,涵盖三角函数的定义、性质、图像、基本关系,以及解三角方程的技巧。数列与数学归纳法在高中...
高中数学的难点知识都有哪些?
高中数学的难点知识主要包括以下几个方面:1.函数与方程:高中数学中的函数与方程是整个数学学科的基础,涉及到的知识点包括函数的概念、性质、图像、极值、最值等;方程的解法、根的性质、根与系数的关系等。这些知识点在高中数学中占有重要地位,需要学生深入理解和掌握。2.数列与数学归纳法:数列是高中...
高中数学中有哪些重难点知识?
高中数学中有许多重难点知识,以下是其中一些常见的:1.函数与方程:包括函数的定义、性质、图像、极值与最值等;方程的解法、根的性质、根与系数的关系等。2.数列与数学归纳法:数列的定义、性质、通项公式、求和公式等;数学归纳法的原理、证明方法等。3.不等式与不等式组:不等式的性质、解法、不...