高数包括什么内容呢

如题所述

    高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与向量代数、级数、常微分方程。

    高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,才能深入地揭示其本质规律,才能使之得到更广泛的应用。

    严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。

温馨提示:内容为网友见解,仅供参考
第1个回答  2015-06-03
1. 2005年数学考试大纲的修订说明与评述

(1) 基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统考试卷仍分为数学一、数学二、数学三和数学四。

(2) 数学一、二试卷高等数学部分,“函数、极限、连续”的考试要求的第4条增加“了解初等函数的概念”的要求。
原为“掌握基本初等函数的性质及其图形”。变为“掌握基本初等函数的性质及其图形,了解初等函数的概念”。
评述:进一步强调基础知识点。
(3)
数学一试卷高等数学部分,“多元函数微分学”的考试要求的第6条,数学二试卷高等数学部分,“多元函数微积分学”的考试要求的第3条,将原来的“会用隐函数的求志法则”改为“了解隐函数存在定理,会求多元隐函数的偏导数”。

评述:进一步强调基础知识点与概念理解的重要性。

(4) 数学三、四试卷高等数学部分,“函数、极限、连续”的考试要求的第3条,将“理解反函数、隐函数的概念”改为“了解反函数、隐函数的概念”,
原为“理解复合函数、反函数、隐函数和分段函数的概念”。变为“理解复合函数及分段函数的概念,了解反函数及隐函数的概念”。
评述:进一步强调基础知识点。
“一元函数微分学”的考试要求的第1条,增加“会求平面曲线的切线方程和法线方程”的要求。
原为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念)”。
变为“理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。”
评述:进一步强调基础知识点,进一步提升对考生能力的要求。

(5)
数学三、四试卷线性代数部分,“线性方程组”的考试要求的第4条改为“4.理解非齐次线性方程组解的结构及通解的概念。5.掌握用初等行变换求解线性方程组的方法”。

原为“4.掌握理解非齐次线性方程组基础解系的求法,会用其特解及相应的导出组的基础解系表示非齐次线性方程组的通解”。变为以上的两条。
评述:进一步提升对考生能力的要求。

(6) 对数学一、三试卷概率论与数理统计部分和数学四试卷概率论部分的一些概念、考试内容和考试要求在文字表述上作了修改,使其更加规范和统一。
(7) 对数学一、二试卷的样卷进行了修订。
(8)
对数学一、二、三、四试卷中的考试内容和考试要求的表述更进一步明确、规范和统一,在考试内容部分只列出内容范围,而将有关内容的要求层次和应用这些内容可以解出的问题在考试要求部分列出。

2.2005年考研数学特点
2005考研数学试卷将进一步加大对考生掌握数学基础知识的准确性与全面性的考察力度,同时坚固不同知识点综合交叉运用性的基本能力。就难度而言,会维持2004年的水平。

2004年数学试题是近5年以来较容易也是最基本的一套试题。
2005年大纲维持2004年要求基本不变。只是进一步加强了对基础性知识点的重视与规范化要求。如:一元微分学中:增加了“接初等函数的概念准确的概念”,“会求平面曲线的切线方程与法线方程”,多元微分学强调了“了解隐函数存在定理,会求多元隐函数的偏导数”,线性代数强调“理解非齐次方程组解的结构及通解的概念”,“掌握用初等行变换求解线性方程组的方法”,等等。准确而全面的概念理解与过硬的基本计算能力,将是2005年考生取胜的关键。加强知识的基础性、系统综合性与交叉性的训练,努力提升对知识的洞察力,以不变应万变,排除误导,是我们的建议。

望采纳本回答被提问者采纳
第2个回答  2015-06-03
微积分是基础
第3个回答  2015-06-03
全部内容

高数要什么基础
1. 基本数学知识,包括算术、初等代数、几何和三角学等,为高等数学学习提供理论基础。2. 线性代数,是研究向量空间性质的数学学科,是学习高等数学中许多领域的基础。3. 解析几何,研究空间中点、线、面的关系,为学习高等数学中的曲线和曲面、曲率等概念提供基础。4. 微积分,研究函数的极限、导数、积...

高等数学分为哪几部分内容?
高等数学通常分为以下几个主要模块:1.微积分:微积分是高等数学的基础,主要涉及函数、极限、导数、积分等内容。微积分包括微分学和积分学两个分支。2.线性代数:线性代数研究向量空间、线性方程组以及线性变换等内容。它主要关注向量、矩阵、行列式、特征值与特征向量等概念及其应用。3.概率论与数理统计:...

高数一、高数二、高数三的区别在哪里?
高等数学一通常包括以下内容:极限、连续性、微分学、积分学和微积分学初步等。高等数学二通常包括以下内容:常微分方程、多元函数微积分学、多元函数微积分中的常微分方程及其应用、级数及其应用、傅里叶级数和傅里叶变换等。高等数学三则通常包括以下内容:向量、空间解析几何、多元函数微积分学综合应用、曲...

请问一下高中学的是高数吗
高中学的是高数,高数内容包括数列、极限、微积分、级数、常微分方程。作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。

大学的高数包括哪些内容
以下是高等数学通常包括的主要内容:极限与连续:包括函数极限、无穷大与无穷小、连续性等。微分学:包括导数的定义、求导法则、高阶导数、隐函数与参数方程的导数、微分中值定理等。积分学:包括不定积分、定积分、牛顿-莱布尼茨公式、定积分的应用等。微分方程:包括一阶和高阶常微分方程、线性微分方程、...

高数和超数的区别
1、高数的含义:通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。2、超数的含义:超越数是指不满足任何整系数(有理系数)多项式方程的实数,即不是代数数的数。二、两者的分类不同:1、高数的分类:高数主要内容包括数列、极限、微积分、空间解析...

高数有哪些
高等数学的主要内容包括微积分、函数分析、常微分方程、偏微分方程、级数、线性代数等。其中微积分是核心部分,涉及到极限理论、导数理论、积分理论及其应用。函数分析则研究函数的性质和行为,包括函数的极限性质、连续性、可微性等。常微分方程和偏微分方程用于描述自然现象中的动态变化过程。级数和线性代数则...

高数包括什么
高等数学主要涵盖线性代数、概率论与数理统计、微积分、数值分析、离散数学、拓扑学、实分析与复分析、偏微分方程、数值分析与计算数学、以及应用数学等。各领域之间相互联系,大学数学内容包括数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程等。高等数学具有高度抽象性、严密逻辑性和广泛应用性...

什么专业要学高数
高等数学主要包括微积分、线性代数、概率论与数理统计等课程,这些课程能培养学生逻辑思维与分析能力,帮助理解复杂问题。并非所有大学课程都要求学习高数,其在工科、理科、财经类研究生教育中是基础科目,其他专业则无需学习。在中国,理工科专业学生(非数学专业)学习的数学较为深入,称为“高等数学”,而...

高数学习几本书大学生来
高等数学是分上下两册,所以高数学习2本书。如高等数学A1和高等数学A2。高数一般指高等数学。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。

相似回答