可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1、制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5、餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
6、电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
7、能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
8、物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
9、城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
10、生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
11、公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
12、个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
扩展资料
七个典型的大数据应用案例
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2、Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3、沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4、快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5、Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6、PredPol Inc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7、 Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
本回答被网友采纳大数据应用于各个行业包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
扩展资料:
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2) 做小而美模式的中小微企业可以利用大数据做服务转型
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。
著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
参考资料:大数据_百度百科
一、电商行业
电商行业是最早利用大数据进行精准营销,它根据客户的消费习惯提前生产资料、物流管理等,有利于精细社会大生产。由于电商的数据较为集中,数据量足够大,数据种类较多,因此未来电商数据应用将会有更多的想象空间,包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、各种消费行为的相关度、消费热点、影响消费的重要因素等。
二、金融行业
大数据在金融行业应用范围是比较广的,它更多应用于交易,现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买出还是卖出。
三、医疗行业
医疗机构无论是病理报告、治愈方案还是药物报告等方面都是数据比较庞大行业,面对众多病毒、肿瘤细胞都处于不断进化的过程,诊断时会发现对疾病的确诊和治疗方案的确定是很困难的,而未来,我们可以借助大数据平台收集不通病例和治疗方案,以及病人的基本特征,可以建立针对疾病特点的数据库。
四、农牧渔
未来大数据应用到农牧渔领域,这样可以帮助农业降低菜贱伤农的概率,也可以精准预测天气变化,帮助农民做好自然灾害的预防工作,也能够提高单位种植面积的高产出;牧农也可以根据大数据分析安排放牧范围,有效利用农场,减少动物流失;渔民也可以利用大数据安排休渔期、定位捕鱼等,同时,也能减少人员损伤。
五、生物技术
基因技术是人类未来挑战疾病的重要武器,科学家可以借助大数据技术的应用,从而也会加快自身基因和其它动物基因的研究过程,这将是人类未来战胜疾病的重要武器之一,未来生物基因技术不但能够改良农作物,还能利用基因技术培养人类器官和消灭害虫等。
六、改善城市
大数据还被应用改善我们日常生活的城市。例如基于城市实时交通信息、利用社交网络和天气数据来优化最新的交通情况。目前很多城市都在进行大数据的分析和试点。
七、改善安全和执法
大数据现在已经广泛应用到安全执法的过程当中。想必大家都知道美国安全局利用大数据进行恐怖主义打击,甚至监控人们的日常生活。而企业则应用大数据技术进行防御网络攻击。警察应用大数据工具进行捕捉罪犯,信用卡公司应用大数据工具来槛车欺诈性交易。
在传统领域大数据同样将发挥巨大作用:帮助农业根据环境气候土壤作物状况进行超精细化耕作;在工业生产领域全盘把握供需平衡,挖掘创新增长点;交通领域实现智能辅助乃至无人驾驶,堵车与事故将成为历史;能源产业将实现精确预测及产量实时调控。
个人的生活数据将被实时采集上传,饮食、健康、出行、家居、医疗、购物、社交,大数据服务将被广泛运用并对用户生活质量产生革命性的提升,一切服务都将以个性化的方式为每一个“你”量身定制,为每一个行为提供基于历史数据与实时动态所产生的智能决策。
本回答被网友采纳近年来,大数据不断向世界的各行各业渗透,影响着我们的衣食住行。例如,网上购物时,经常会发现电子商务门户网站向我们推荐商品,往往这类商品都是我们最近需要的。这是因为用户上网行为轨迹的相关数据都会被搜集记录,并通过大数据分析,使用推荐系统将用户可能需要的物品进行推荐,从而达到精准营销的目的。下面简单介绍几种大数据的应用场景。
大数据让就医看病更简单。过去,对于患者的治疗方案,大多数都是通过医师的经验来进行,优秀的医师固然能够为患者提供好的治疗方案,但由于医师的水平不相同,所以很难保证患者都能够接受最佳的治疗方案。
而随着大数据在医疗行业的深度融合,大数据平台积累了海量的病例、病例报告、治愈方案、药物报告等信息资源.所有常见的病例、既往病例等都记录在案,医生通过有效、连续的诊疗记录,能够给病人优质、合理的诊疗方案。这样不仅提高医生的看病效率,而且能够降低误诊率,从而让患者在最短的时间接受最好的治疗。下面列举大数据在医疗行业的应用,具体如下。
(1) 优化医疗方案,提供最佳治疗方法。
面对数目及种类众多的病菌、病毒,以及肿瘤细胞时,疾病的确诊和治疗方案的确定也是很困难的。借助于大数据平台,可以搜集不同病人的疾病特征、病例和治疗方案,从而建立医疗行业的病人分类数据库。如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确地定位疾病。在制订治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制订出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业研发出更加有效的药物和医疗器械。
(2)有效预防预测疾病。
解决患者的疾病,最为简单的方式就是防患于未然。通过大数据对于群众的人体数据监控,将各自的健康数据、生命体征指标都集合在数据库和健康档案中。通过大数据分析应用,推动覆盖全生命周期的预防、治疗、康复和健康管理的一体化健康服务,这是未来健康服务管理的新趋势。当然,这一点不仅需 要医疗机构加快大数据的建设,还需要群众定期去做检查,及时更新数据,以便通过大数据来预防和预测疾病的发生,做到早治疗、早康复。当然,随着大数据的不断发展,以及在各个领域的应用,一些大规模的流感也能够通过大数据实现预测。
随着大数据技术的应用,越来越多的金融企业也开始投身到大数据应用实践中。麦肯锡的一份研究显示,金融业在大数据价值潜力指数中排名第一。下面列举若干大数据在金融行业的典型应用,具体如下。
(1) 精准营销。
银行在互联网的冲击下,迫切需要掌握更多用户信息,继而构建用户360立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。
(2) 风险管控。
应用大数据平台,可以统一管理金融企业内部多源异构数据和外部征信数据,更好地完善风控体系。内部可保证数据的完整性与安全性,外部可控制用户风险。
(3) 决策支持。
通过大数据分析方法改善经营决策,为管理层提供可靠的数据支撑,从而使经营决策更高效、敏捷、精准。
(4) 服务创新。
通过对大数据的应用,改善与客户之间的交互、增加用户黏性,为个人与政府提供增值服务,不断增强金融企业业务核心竞争力。
(5) 产品创新。
通过高端数据分析和综合化数据分享,有效对接银行、保险、信托、基金等各类金融产品,使金融企业能够从其他领域借鉴并创造出新的金融产品。
美国零售业曾经有这样一个传奇故事,某家商店将纸尿裤和啤酒并排放在一起销售,结果纸尿裤和啤酒的销量双双增长!为什么看起来风马牛不相及的两种商品搭配在一起,能取到如此惊人的效果呢?后来经过分析发现,这些购买者多数是已婚男士,这些男士在为小孩购买尿不湿的同时,会同时为自己购买一些啤酒。发现这个秘密后,沃尔玛超市就大胆地将啤酒摆放在尿不湿旁边,这样顾客购买的时候更方便,销量自然也会大幅上升。
之所以讲“啤酒-尿布”这个例子,其实是想告诉大家,挖掘大数据潜在的价值,是零售业竞争的核心竞争力,下面列举若干大数据在零售业的创新应用,具体如下。
(1) 精准定位零售行业市场。
企业想进人或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进人或者开拓这块市场。通常需要分析这个区域流动人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样等等,这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是市场定位过程。
(2) 支撑行业收益管理。
大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,而传统的数据分析大多采集的是企业自身的历史数据来进行预测和分析,容易忽视整个零售行业信息数据,因此难免使预测结果存在偏差。企业在实施收益管理过程中如果能在自有数据的基础上,依靠一些自动化信息采集软件来收集更多的零售行业数据,了解更多的零售行业市场信息,这将会对制订准确的收益策略,赢得更高的收益起到推进作用。
(3) 挖掘零售行业新需求。
作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值取向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制定合理的价格及提高服务质量,从中获取更大的收益。
本回答被网友采纳