列方程解应用题和答案

如题所述

1.
某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?

2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为(
)

A.45%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50

C. x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50

4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.

知能点2: 方案选择问题

6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达

4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:
如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.

(1)写出y1,y2与x之间的函数关系式(即等式).

(2)一个月内通话多少分钟,两种通话方式的费用相同?

(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时??应交电费是多少元?

9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,?销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

10.小刚为书房买灯。现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。假设两种灯的照明效果一样,使用寿命都可以达到2800小时。已知小刚家所在地的电

价是每千瓦时0.5元。

(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。(费用=灯的售价+电费)

(2).小刚想在这种灯中选购两盏。假定照明时间是3000小时,使用寿命都是2800小时。请你设计一种费用最低的选灯照明方案,并说明理由。

知能点3储蓄、储蓄利息问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)

(3)利润?每个期数内的利息?100%, 本金

11. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)

12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:

(1)直接存入一个6年期;

(2)先存入一个三年期,3年后将本息和自动转存一个三年期;

(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始

存入的本金比较少?

13.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,?把每件的销售价降低x%出售,?但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于(
).

A.1 B.1.8 C.2 D.10

15.用若干元人民币购买了一种年利率为10%
的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。问张叔叔当初购买这咱债券花了多少元?

知能点4:工程问题

工作量=工作效率×工作时间 工作效率=工作量÷工作时间

工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1

16. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

17.
一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

18.
一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?

19.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.?已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,?求这一天有几个工人加工甲种零件.

21.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?

知能点5:若干应用问题等量关系的规律

(1)和、差、倍、分问题
此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率 现在量=原有量+增长量

(2)等积变形问题

常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 V=底面积×高=S·h=?rh 2

②长方体的体积 V=长×宽×高=abc

22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的

23.一个装满水的内部长、宽、高分别为300毫米,300毫米和80?毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,?≈3.14).

24.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm,又知甲的体积是乙的体积的2.5倍,求乙的高?

25。问每个仓库各有多少粮食? 7

知能点6:行程问题

基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题 (2)追及问题

快行距+慢行距=原距 快行距-慢行距=原距

(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?

(2)两车同时开出,相背而行多少小时后两车相距600公里?

(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?

(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
温馨提示:内容为网友见解,仅供参考
无其他回答

五年级列方程解应用题
1.加工一批零件,原计划15天完成,实际每天多做30个,结果只用10天就完成了任务,这批零件有多少个?2.14千克大豆的价钱与8千克花生的价钱相等,已知1千克花生比1千克大豆贵1.2元,求大豆和花生的单价各是多少?3.一根绳子三折后绕树余10厘米,如果四折后绕树就差20厘米,求树的周长和绳长。答案...

小升初奥数:列方程解应用题及解析
解:设原计划生产时间为X天 40×(X+6)=60×(X-4)7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?解:设X天后,乙仓存粮是甲仓的2倍 (32+4X)×2=57+9X 【篇二】1.一辆汽车,从甲地到乙地.如果每小时行45千米,就...

关于五年级方程的应用题 要答案
解:设甲数为X,乙数为(32-X)。3X+(32-X)×5=122 3X+160-5X=122 2X=38 X=19 32-X=32-19=13 答:甲数是19,乙数是13。弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍?解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍。(25-X)×2=17+X 50...

列方程解应用题
1.1X+40=810 1.1X=770 X=770\/1.1 X=700 这种商品的进价为700元

小学五年级数学: 列方程解应用题。
解:设它的宽是x米,则长为2x米。2(x+2x)=648 得x=108 2x=216 所以,长为216米。(记得给分哦~~)

列方程解应用题
(X-1。5)(8-6)=40-1。5*8 X=15。5 即甲出发15。5小时后追上 敌我两军相距25千米,敌军以每小时5千米的速度逃跑,我军同时以每小时8千米的速度追击,并在相距1千米处发生战斗,问战斗是在开始追击几小时后发生的?设时间是X X(8-5)=25-1 X=8 即在追及8小时后发生的 ...

小学六年级应用题,方程解,10题10分
解:(1)设每筐梨重x千克。50×15.2=16x x=47.5 答:每筐梨重47.5kg。(2)设每个排球x元。3×50+6x=330 6x=180 x=30 答:每个排球30元。(3)设中年级植树x棵。3x+3=306 3x=303 x=101 答:中年级植树101棵。(4)设平均每辆车运货x吨。18x+10.8=128 18x=107.2 x=5.9...

急需小学六年级的数学题,主要需要解方程还有列方程解答的应用题
(24-10)X+300=750解得X=225\/7,4解设甲堆原来有X吨,那么乙堆为164-X吨.根据题意得,X+20%(164-X)-(164-X)80%=12解得X=69,所以甲堆原来为69吨,乙堆原来有95吨.列方程解答应用题六年级数学试卷 列方程解答下列应用题.x0b(1)一种收音机每台售价今年比去年降低25%,今年每台...

求解答列方程解应用题,
1.设有X人 9X-5=8X+2 9X-8X=5+2 X=7 一共有7人 2.设这个班有X人 2X+35=131 2X=131-35 2X=96 X=96\/2 X=48 这个班有48人

求30道列二元一次方程组解应用题,要俩问的。带解题过程
答案:X=2 Y=1 (2) 18x+23y=2303 74x-y=1998 答案:x=27 y=79 (3) 44x+90y=7796 44x+y=3476 答案:x=79 y=48 (4) 76x-66y=4082 30x-y=2940 答案:x=98 y=51 (5) 67x+54y=8546 71x-y=5680 答案:x=80 y=59 (6) 42x-95y=-1410 21x-y=1575 答案:x=75 y...

相似回答