高数问题.不定积分.

1.∫dx/(x√(9-x^2))
2.∫√(a^2-x^2)dx/(x^2)
3.∫dx/(x√(x^2+4))
4.这个比较简单点,就是tanx的四次方的积分 和cosx的四次方的积分
还有两个就是tanx的平方的积分 和cotx的平方的积分.
这四个三角的积分怎么求呢? 可能很简单.但是我三角全忘,见笑了.

前三题的标答:
1.1/3*ln|x|-1/3*ln(3+√(9-x^2))+C
2.-√(a^2-x^2)/x-arcsin(x/a)+C
3.1/2*ln|x|-1/2*ln(2+√(x^2+4))+C
那个是根号,^表示平方.看的懂吧.
答对了追加50分.
过程要有哦.做完参照标准答案.
如果认为自己对了答案错了也可以发过程哦.

在这个地方不会打数学符号,只好给你作一些关键提示:
1、三角代换x=3sint, 被积表达式化为 dt/(3sint), 求得的原函数为 (1/3)ln|csct-cott|,往下请自己完成。

2、三角代换x=asint, 被积表达式化为 (tant)^2dt=[(sect)^2-1]dt,
这是很容易求出的积分。

3、三角代换x=2tant, 被积表达式化为 (1/2)cscdt , 属于常用积分公式。
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-02-01
1:在分子上再提出一个x
2:这个感觉答案有问题,把积分看成两项
3:类似1
第2个回答  2009-01-29
我用的,手机,给你打答案好痛苦啊,其实都不难的,这样吧,先给你提示第4题。tanx的4次方可以拆成两个tanx平方的积,其中一个tanx平方又拆成secx平方-1 。把括号打开就是(tanxsecx)^2dx-(tanx)^2dx 前面一项等价于(tanx)^2dtanx 后面一项再化为sec^2x-1,我想我不用再多说了吧

高数问题 不定积分
=arctan(sinx\/√2)\/(3√2)+ln((1+sinx)\/(1-sinx))\/6+C (C是常数)。

高数问题 求不定积分
令x=atanu,则dx=a(secu)^2 du ∫(x^2+a^2)^(3\/2) dx =∫ (a^4)(secu)^3·(secu)^2 du =(a^4)∫ (secu)^5 du =(a^4)[1\/4·tanu(secu)^3+3\/4·∫(secu)^3 du]=(a^4)[1\/4·tanu(secu)^3+3\/8·tanu·secu+3\/8·∫secu du]=(a^4)[1\/4·tanu(secu)^...

高数不定积分,大神快来
被积函数定义域为x>1或x<-1 当x>1时,设x=sect(0<t<π\/2),则√(x²-1)=tant,dx=secttantdt 原式=∫secttantdt\/secttant=∫dt=t+C ∵x=sect=1\/cost,∴cost=1\/x,t=arccos(1\/x)∴原式=arccos(1\/x)+C 又当x>1>0时,1\/x=|1\/x| 当x<-1时,设x=-u,则u>1,dx=...

高数,不定积分
∫f(x) dx = sinx\/x +C f(x)= (xcosx -sinx)\/x^2 \/\/ ∫x^3.f'(x) dx =∫x^3 df(x)=x^3 .f(x) -3∫x^2 .f(x) dx =x(xcosx -sinx) - 3∫(xcosx -sinx) dx =x(xcosx -sinx) -3cosx - 3∫xcosx dx =x(xcosx -sinx) -3cosx - 3∫xdsinx =x(xcos...

高数,求不定积分。求具体过程。
解法请见下图:在微积分中,函数的不定积分是一个表达式,定积分是一个数。,

高数!不定积分题,求解,请给出计算过程。5
解:∫xlnxdx=(1\/2)*∫lnxdx^2 (此题考虑分部积分,先积幂函数)=1\/2*[(x^2)*(lnx)-∫x^2*1\/xdx]=1\/2*[x^2*lnx-∫xdx]=1\/2*x^2*lnx- 1\/4*x^2+C,C为任意常数。∫e^xcosxdx=∫cosxde^x (此题考虑分部积分,先积指数函数)=cosx*e^x+∫e^x*sinxdx=cosx*e^x+∫...

(高数,不定积分)帮忙写一下这个的不定积分的求解过程?感谢
∫xf ' (x)dx=∫xdf(x)=xf(x)-∫f(x)dx =xf(x)-sinx\/x+C 其中f(x)=【sinx\/x】'求出代入即得。5题,因为sinx\/f(x)=【arctan(cosx)+C】'=-sinx\/(1+cos²x),所以f(x)=-(1+cos²x)。则∫f(x)dx=-∫(1+cos²x)dx =-∫【(3+cos2x)\/2】...

考研高数中,不定积分的几何意义是什么?
简单分析一下,答案如图所示

高数不定积分,详细过程
=∫(1\/sin^6 x)dx-∫(1\/sin^4 x)dx =∫(sec^6 x)dx-∫(sec^4 x)dx =∫(sec^4 x)*sec²xdx-∫sec²x*sec²xdx =∫(sec²x)²d(tanx)-∫sec²xd(tanx)=∫(1+tan²x)²d(tanx)-∫(1+tan²x)d(tanx)=∫(1+2tan&#...

简单的高数,不定积分题目,换元法,求数学帝来帮帮忙!谢了
=-1\/2*ln|1\/x^2+√(1\/x^4+1)|+C 2、令x=sint dx=costdt 原式=∫costdt\/(sint+cost)令A=∫costdt\/(sint+cost) B=∫sintdt\/(sint+cost)A+B=∫(sint+cost)dt\/(sint+cost)=t+C1 A-B=∫(cost-sint)dt\/(sint+cost)=∫d(sint+cost)\/(sint+cost)=ln|sint+cost|+C2...

相似回答